本稿執筆時点では,Lunar Lakeの正式な製品名やSKUなどは明らかになっていない。同CPUの出荷が始まる2024年第3四半期頃に,改めて発表となるようだ。
Lunar Lakeは,CPUコアとGPU,NPU,メディアのエンコードやデコードを行うメディアエンジン,ディスプレイを管理するディスプレイエンジンを統合した大きな「Compute tile」と,PCI Express(以下,PCIe)やUSB,ストレージといったインタフェース類をまとめた「Platform Controller tile」で構成されるSoC(System-on-a-chip)だ。これらのダイを,広帯域かつ低消費電力で接続する「Embedded Multi-die Interconnect Bridge」(EMIB)と,ダイの積層技術「Foveros」で同一パッケージ上に実装する。
Meteor Lakeでは,これらの機能を4つのダイに割り当てていたので,これと比べるとダイの数が減ってシンプルな構成となった。なお,Compute tileはTSMCの「N3B」プロセス,Platform Controller tileは同じくTSMCの「N6」プロセスで製造するという。つまり,Intelのプロセスは使っていない。
前世代から大きく変わったCPUコア
CPUコアは,高性能コア「P-core」が4基,省電力コア「E-core」が4基という構成だ。どちらのマイクロアーキテクチャも,Meteor Lakeより新しくなっており,P-coreには「Lion Cove」アーキテクチャ,E-coreには「Skymont」アーキテクチャを採用する。
Meteor Lakeでは,E-coreよりもさらに低消費電力の「LP E-core」が2基あったが,Lunar Lakeでは搭載していないのもポイントだ。Intelによると,Lunar Lakeは,さらに電力効率を重視した設計で,LP E-coreの役割をE-coreでカバーできるため,省略したとのこと。さらに設計の単純化とダイ面積の縮小というメリットもある。
P-coreのLion Coveは,Meteor Lakeの「Redwood Cove」と比べて,動作クロックが低くなった。その一方で,実行ユニットの数は増えており,IPC(Instructions Per Clock,クロックあたりの命令実行数)が平均14%も向上した。
また,Lunar Lakeでは,Intel製CPUで長年採用していた「Hyper-Threading」に対応しない点も見どころである。Hyper-Threadingは,1つのCPUコア上で2つのスレッドを並行して処理する仕組みだ。Intelによると,Hyper-Threadingを有効化することで,IPCが30%向上するメリットがある一方で,スレッドやプロセス管理,セキュリティ対策などで,回路規模と消費電力が増えてしまうデメリットもある。
このため,Lunar Lakeでは,Hyper-Threadingを採用しない方針に切り替えたそうだ。Lunar LakeのP-coreは,電力効率を重視した設計で,Hyper-Threadingを有効化した場合と比べて,電力あたりの性能が5%高い。面積あたりの電力効率も15%向上した。
ただし,面積あたりの性能は,Hyper-Threadingを有効化したほうが高くなるので,たとえば「Xeon」など,多くのスレッド処理が求められる製品でLion Coveを使用する場合は,Hyper-Threadingを採用する可能性はあるとのことだ。
Lion Coveは,AIを利用した電力管理機能を備えているのも見どころだ。実行されているワークロードとCPU温度を検知して,CPUに供給する電力を厳密に管理するという。また,従来のIntel製CPUでは,100MHz単位のクロック制御であったのに対して,Lion Coveでは,16.67MHz単位という細かな制御が可能となった。これにより,CPUに設定された限界近くまで,クロックを引き上げられるという。
E-coreのSkymontも,実行ユニットの増量といった強化が加えられている。Meteor LakeのLP E-coreと比べて,シングルスレッドの浮動小数点演算性能は38%,マルチスレッドでの整数演算性能は68%向上した。また,先述したように,E-coreのみでも従来よりも幅広いワークロードに対応できるのも見どころとなっている。
低電力時の動作では,デスクトップPC向け第13世代CoreプロセッサのP-coreである「Raptor Cove」に匹敵する場面があるというのも驚きだ。
また,OSに対してCPUコアの状況を通知して,処理の割り振りを行う「Thread Director」も改良されている。Meteor Lakeでは,まずLP E-coreに処理を割り振り,賄えない分をE-coreやP-coreに移していた。ただ,LP E-coreは2コアしかなく,性能も高くないので,結局はE-coreとP-coreで,処理することが多くなる。
Luna Lakeも基本的には,E-coreを優先的に使って,溢れた分をP-coreで処理する方針に変更はない。ただし,Luna LakeのE-coreクラスタは比較的大きく性能も高いので,E-coreだけで多くのアプリケーションを処理できるようになった。
たとえば,Microsoftのビデオ会議アプリケーション「Teams」の場合,Lunar Lakeなら消費電力が大きなP-coreをほとんど使わずに実行できる。そのためLunar Lakeでは,Meteor Lakeと比べて消費電力を35%減らせるそうだ。
性能が1.5倍となった統合GPU
Luna Lakeでは,統合GPUマイクロアーキテクチャに,新しい「Xe2」を採用した。Xe2は,Intelが開発を進めている次世代GPUへの採用を予定しているアーキテクチャで,ここでも効率の改善を強く掲げている。
Xe2は,ベクタ演算器である「Vector Engine」と,AI処理を行う「XMX Engine」を8基備える。これに加えて,ロードストアユニットとL1キャッシュをまとめて「Xe Core」を構成する。Vector Engineが,SIMD16命令に対応したことで,演算処理の効率が上がったという。
XMX Engineは,Xe2の鍵とも言える存在だろう。XMX Engineは,単体GPUの「Intel Arc」シリーズが搭載していたAI処理ユニットで,演算性能は67 TOPSに達する。しかし,Meteor Lakeの統合GPUでは省略されていた。それがLunar Lakeでは復活することとなったわけだ。
Intelは,XMX Engineの復活について,「AIを活用したアプリケーションの存在感が増しており,市場からも要求が高まっているからだ」と説明する。
Lunar Lakeは,AI処理用のNPUを搭載しているのに,なぜGPUにも同様の機能が必要なのか,という疑問が浮かぶかもしれない。これは,「用途によって求められるものが違うからだ」とIntelは答える。NPUは,音声や動画のノイズ除去など,とくに電力消費を抑えつつ処理したいケースに用いられる。一方,GPUのAIアクセラレータは,動画内のオブジェクト検出や画像生成といった処理性能が求められる用途に使われるという。
Xe2には,強化されたXe2と,レイトレーシングユニットである「RTU」も4基備える。Xe CoreとRTUに,サンプラーやジオメトリエンジン,ラスタライザーなどを組み合わせたのが「Render Slice」だ。Lunar Lakeの統合GPUは,このRender Sliceを2つ搭載している。
Intelによると,Meteor Lakeの統合GPUと比較して,性能が最大1.5倍に向上したという。また,高性能版のMeteor Lake-Hプロセッサと,低電力版のMeteor Lake-Uという2つのプロセッサでカバーしていた用途を,Lunar Lakeでは1種類のプロセッサでカバーできるのもポイントだ。
Lunar LakeのCompute tileには,メディアエンジンとディスプレイエンジンにも,それぞれ見どころがある。メディアエンジンでは,次世代のメディアコーデックである「H.266/VVC」に対応したデコーダを追加した。
H.266/VVCは,普及し始めた「AV1」コーデックと比べて,ファイルサイズを抑えられるとのこと。また,帯域幅に合わせて再生中している動画の解像度をシームレスに変更する「Adaptive Resolution Steam」や,360度全周動画のデコードなどに対応するのも特徴となっている。
ディスプレイエンジンでは,ディスプレイパネルとの接続インタフェースとして,「Embedded DisplayPort 1.5」(以下,eDP 1.5)に対応するのがポイントだ。eDP 1.5では,ディスプレイパネルの消費電力を抑える省電力機能「Panel Self Refresh」とディスプレイ同期技術「Adaptive-Sync」の拡張が行われている。
Panel Self Refreshは,PCがスタンバイ状態でも直前に表示した映像をメモリに記録しておける仕組みだ。PCの状態に変化があるまで,低電力で映像表示をそのまま維持できる。また,eDP 1.5で新たに加わった「Panel Replay」機能は,映像で変化があった部分だけ更新するというもので,これも電力消費の削減に寄与するという。
また,Adaptive-Syncでは,ゲームをプレイしているときや,動画を見ているときのちらつきを抑える機能を実装しているそうだ。
従来比で性能が4倍になったNPU
Meteor Lakeから継続して搭載するNPUは,第4世代に進化した。行列計算を行う演算器「MAC Array」の数を3倍に増量。加えて,センサーや画像の処理に利用する「SHAVE DSP」の動作周波数も引き上げた。これにより,NPUの演算性能は,Meteor Lakeの11 TOPSから,48 TOPSに向上したという。
Microsftが推進する新しい薄型ノートPCのブランドである「Copilot+ PC」は,40 TOPS以上の性能を備えたNPUを搭載することが要件となっている。Meteor Lakeは,これを満たしているというわけだ。2024年第3四半期には,Meteor Lakeを搭載したCopilot+ PCが数多く登場するだろう。
メインメモリもパッケージ上に実装
Lunar Lakeでは,メインメモリも大きな変化がある。Apple独自のSoC「Apple M」シリーズのように,SoCのパッケージ上にメインメモリを実装したのだ。パッケージ上に実装することで,PCの基板面積を削減できるうえ,電力消費も減らせる。
その一方で,メインメモリ容量のラインナップが,16GBと32GBのみに限られてしまう点は気になる。ただ,薄型ノートPCの場合,32GBを超える大容量メモリは求められないのかもしれない。
メモリサブシステムでは,「Memory side cache」も紹介したい。メディアエンジンやP-coreに囲まれた場所に配置された高帯域幅の「Network-On-Chip Fabric」(NOCファブリック)で,Compute tileの各エリアと接続している。小さなデータのやり取りは,メインメモリを介さずにMemory side cacheで行うため,高速かつ低消費電力のデータ伝送を実現できる。
HaswellやSkyLakeに搭載していた「Embedded DRAM」(eDRAM)を思い出す人もいるかもしれない。
Lunar Lakeは,Intelが「電力あたりの性能を最大限引き出せるように,すべてのコンポーネントを見直した」というだけあって,Meteor Lakeから大きな変更が加えられたことが分かる。
Lunar Lakeは薄型ノートPCを主なターゲットとしているが,Intelは,2024年内に,デスクトップPCや高性能なゲーマー向けノートPC向けの新型プロセッサ「Arrow Lake」も(開発コードネーム)を開発中だ。今回明らかになったLunar Lakeの特徴が,どれだけArrow Lakeに引き継がれるのか,それとも異なるのかが気になるところだ。
鄭重声明:本文の著作権は原作者に帰属します。記事の転載は情報の伝達のみを目的としており、投資の助言を構成するものではありません。もし侵害行為があれば、すぐにご連絡ください。修正または削除いたします。ありがとうございます。